
Εὔτυπον Τευ̃χος Νο. 6 — Ἀπρίλιος 2001 19

Multilingual Support in LATEX3: What
are the Issues?

Marcel Oliver

Email: oliver@member.ams. org

Abstract

3is document summarizes the discussion on the LATEX-L mailing list
concerning input, output, and internal�aracter encodings inLATEX.3egoal
of this summary is to ensure that future versions of LATEXprovide a supe-
rior environment for typese(ing non-English, non-Latin, and multilingual
documents.
Few of these ideas are mine, but responsibility for inaccuracies and bias

lies entirelywithme. I encourage everybody to commenton, pat�,or amend
this document, and will try to keep it up to date for as long as necessary.

1. User visible encodings

I start the discussion with user visible encodings, by whi� I mean encodings
consciously encountered when preparing and processing input files. We will
defer TEX internal and font encoding issues later to later sections as, at least
in principle, TEX/LATEX/ and auxiliary programs will take care of �oosing,
displaying, converting, and printing the document in appropriate fonts. 3e
how is of no interest to the user as long as it works. From the te�nical point of
view this division is certainly artificial, but it’s important to set a clear target
for the ‘‘user experience’’ with future versions of LATEX.

1.1. Input encodings

Currently, it is difficult to enter many non-English or multilingual scripts.
Most Latin based languages are well supported, but non-Latin scripts or mul-
tiple languages in one document are substantially more difficult to work with.
While it is possible to produce high quality print, the way to get there is oOen
not particularly user friendly.

Two input strategies can be used: One can provide plain  input, or
type the document in a language specific encoding whi� is made known to
LATEX via the inputenc paQage.

20 Marcel Oliver

— Typing  can be very tedious, and makes it hard to proofread the
.tex file. Portability is good in theory, but since one must frequently
depend on add-on paQages whi� are neither part of core LATEX nor
found in standard distributions, migrating files from one installation to
another can be an adventure nonetheless. A document requiring nothing
but babel can probably be considered portable, even though Greek and
Cyrillic fonts are missing in a default install, for example.

— Se(ing an input encoding works well for single languages. However, it is
not a solution for multilingual work unless the �osen input encoding is
effectively . Moreover, the current inputenc still misses important
encodings; Greek ISO-8859-7, for example, must be downloaded sepa-
rately.

1.2. Diagnostic messages

Diagnostic messages are oOen cryptic and therefore less helpful than they
ought to be. One fundamental issue is that error messages contain the full
expansion of the input stream up to the point when the error is detected,
and can thus contain parts of macro definitions. 3e situation is even worse
when the input contains non- symbols whi� are e�oed by �aracter
code. If the script is overwhelmingly non-, the diagnostic output is oOen
useless. Further, errors and warnings behave differently with respect to non-
�aracters:

— TEX error messages e�o the input encoding.

— Overfull box messages use a format related to the output encoding of the
current font.

Example: ‘‘Müll’’ in a German Latin-1 encoded file will be e�oed as M^^fcll
in an error message, but as M^^?ull in an overfull \hboxmessage—unless T1
font encoding is selected, whi� returns M^^fcll in both cases.

Most TEX implementations now allow messages to be printed without
conversion to ^^ format. However, this does not provide sufficient generality
for a clean general-purpose solution. Note, for example, that screen output (on
Unix) goes to an Xterm, while the input encoding is generated by an editor,
whi� do not necessarily use the same encoding s�eme.

Multilingual Support in LATEX3 21

1.3. �e case for -

3e two issues could, at least in principle, be resolved by leveraging -
 as the default input and diagnostic output encoding. 3e most important
arguments are listed here, see [14] for further details.

— - encodes , hence covers virtually all scripts of this world.

— 3e �aractermodel is fairly stable andwell documented. (3ere
are still lot’s of empty slots that someone will eventually fill. 3e specifi-
cation for mathematical symbols, in particular, is not yet complete.)

— All  �aracters have their usual position in -. In other words,
current  .tex files would continue to work without �ange.

— - has 1–6 byte �aracters, but by looking at a single byte one knows
how many will follow. 3is makes parsing (especially on 8-bit TEX) rela-
tively straightforward. Note that - does not have this property, and
may be(er be handled by a front-end filter.

— Support for editing and displaying - exists on all major platforms,
and is rapidlygrowing in popularity. Programming library support is also
fairly good. Some details on platform support are listed in Appendix 9.

— Diagnostic messages could (although not with current TEX engine) be
output in the correct script. 3is would be a major improvement for
users, and fit well into a paradigm ‘‘anything that goes in and comes out
is -, unless specified otherwise.’’ (DVI output is not relevant here as
it is always handled by special purpose applications.)

1.4. Existing Implementations

— 3ere is an implementation for - input on a TEX engine (xmltex by
David Carlisle [3]) that also uses - internally.

— 3ere also exists a - option for the inputenc paQage [19]. Every -
 code point is given a TEX name, whi� may make it too unwieldy
for typical single-alphabet use.

— 3e ‘‘combining �aracters’’ of  are difficult to handle with a TEX
based parser. It is not possible for TEX to parse - correctly (not really
essential anyway). See Appendix 6 for details.

— It is not trivial to handle input errors gracefully (i.e. givemeaningful error
messages) with TEX based parsers.

— Ω as a native implementationof TEX isdesigned tohandle general
- input. More in Section 3.

22 Marcel Oliver

1.5. Macro names in native scripts

If LATEX is tobeused as a truly international typese(ing engine, it is desirable
to allow for native macro names. While the occidental s�olar, or someone
typese(ing a single Latin-alphabet language, will find English macro names
perfectly acceptable, users of non-Latinkeyboards, especiallywhen typese(ing
right-to-leO scripts, are currently at a clear disadvantage.

However, non- �aracters in macro names must interact differently
with input encoding translations than regular text. 3e resulting problems
have so far been underexplored, with the exception of Javier Bezos’ prototype
lambda paQage [2] discussed further in Section 4.3.

1.6. Lost 5aracter conditions

3eway LATEX/TEX/ handles lost �aracters—�aracters that do not exist in
the selected fonts—should be improved. 3e current behavior is to ignore the
�aracter and write a warning message. 3e following options (or a combina-
tion thereof) may be be(er:

— Substitution with a �aracter from another font (LATEX can do this for
�aracters represented by encoding-specific commands, but there isn’t a
me�anism in TEX for explicit �aracter tokens).

— Typeset a suitable representation (e.g., U+0312 in a suitably distinct font)
of the for the�aracter. Especially useful in verbatim-like context:
it would have eased the compilation of this document in several places.

— An error message.

2. Internal encodings and font encodings

3e LATEX/TEX/ internal �aracter handling is considered a mu� more im-
portant topic of discussion, as arbitrary input and diagnostic handling could,
at least in theory, be put on top of TEX, or pat�ed without affecting its in-
ner workings. Apart from not being optimally suited for handling the user
interface aspects of ‘‘modern’’ encodings like -, the current TEX �aracter
model is deficient in three aspects: Hyphenation, need for virtual fonts, and
kerning.

Multilingual Support in LATEX3 23

2.1. Hyphenation and virtual fonts

With the proliferation of output encodings and growing support for multi-
lingual multi-encoded documents, hyphenation pa(erns are increasingly dif-
ficult to maintain:

— Internal hyphenation pa(erns are stored in terms of an output encoding.

— 3e hyphenation rules are also frequently wri(en in directly in terms
of the output encoding. Is possible to use symbolic representations of
�aracters (\ss) rather than hex code values so that a pa(ern can be used
with different font encodings. However, already at the time of format
creation the pa(ern is compiled into the internal format. In other words,
ea� font encoding must be specified when the format is created, and
different font encodings must logically be treated as different languages.

3is behavior is logically wrong, as hyphenation has nothing to do with font
encoding. One should be able to add a new output encoding without the
need for running initex. Moreover, new fonts must first be mapped into a
TEX specific encoding (OT1, T1, . . .) through the creation of a virtual font
(VF). While this is a one-time effort and does not directly affect the user, it is
nonetheless a complication wemay livewithout. Appendix 8 gives somemore
details.

2.2. Kerning

3e output encoding is limited to 8-bit fonts, whi� is not be enough to get
correct kerning for some languages. Examples:

— Greek, if one requires (as LATEX currently does) that visible  is part of
the font encoding.

— A full swash italic font with automatic ligaturing for uppercases (includ-
ing accented ones), additional ligature pairs, and special ending �arac-
ters. (An example could be the full set of AJenson; also see [18]).

— Japanese, to a certain extent. But there are more typographic oddi-
ties whi� can’t be handled properly (i.e., automatically) within TEX
(Kerning between Japanese �aracters, Latin �aracters, and punctua-
tion marks; vertical typese(ing, underline, justification by filling space
between glyphs by inserting a special filler comparable to the Arabic
‘‘keshideh’’, and other issues. Werner Lemberg’s CJK paQage [15] has
implemented some of these).

24 Marcel Oliver

3. Ω

3.1. Principles of Ω

Ω [11] is a -capable extension of TEX. It is largely compatible,
but adds a number of additional capabilities. 3is section gives only a brief
overview—for a more complete description, see the Ω draO documenta-
tion [12].

— Internal 32-bit �aracter representation.

— FeaturesOTPs (ΩTranslationProcesses)whi�are ‘‘staQable’’ finite state
ma�ines that operate on the input stream.OTPs canbeused for input and
output encoding translations, for ‘‘shape’’ �anges (case, script variants,
etc.), and for handling language typographical features without explicit
markup. (For example, German "ck, Spanish "rr, Portuguese f{}i, and
Arabic ligatures [10] can all be handled by OTPs.)

— In TEX, only the protected expansion (aka. LICR, see Section 4.1) is under
our control. In Ω, once tokens are expanded, primitives are evaluated
as in TEX, but �ars can be further processed using OTPs. If the result
contains macros, these are expanded and evaluated in turn, and so on.

Main advantages:

— Less need for virtual fonts. (‘‘Must I create several hundreds of VF files
only to remove the fi ligature?’’)

— Reduce the need for active �aracters [13] and pre-passes.

RP mentions his work on FarsiTEX [9]: Before Ω, he needed a pre-pass to
do contextual shaping, and active Tatweels inserted between le(ers to stret�
them to fit the line of text.

3.2. Shortcomings of Ω

In current Ω, OTPs act only in two places, namely when the file is initially
read before the input gets tokenized, and when building a horizontal list. 3e
following problems therefore remain.

— 3eΩ command \InputTranslationselects a translation for all the�ar-
acters of the file—macro names, macro definitions and material for type-
se(ing. 3e command is primarily intended for ‘‘te�nical translations’’
su� as one-byte to two-bytes or li(le-endian to big-endian, but could

Multilingual Support in LATEX3 25

possibly be used for a whole-sale - to internal  translation.
As explained in Section 4.5, �anging the \InputTranslationwill cause
unexpected interfere with macro expansion.

— If the translation to  is done via OTPs hooked into the hlist
builder (as is implemented in , see Section 4.3), then most of the
processing is still done in the (typically 8-bit) input encoding, see the
discussion in Section 4.4.

— Hyphenation still works as in TEX, namely on the font encoding. 3e Ω

documentation [12] anticipates future work in this area.

— Ω appears to still have the same problems with error and warning mes-
sages as TEX.

4. Models for internal �aracter representation

4.1. �e current LICR

Current LATEX has conceptionally only three levels: Source, internal repre-
sentation (LICR), and output. Protected expansion (\protected@edef) trans-
forms the source into an ICR that is conceptionally well-defined—despite its
restriction to 7-bit  by the limitations of TEX. Characters whi� cannot be
directly represented this way are kept (e.g., wri(en into .aux files) in the form
of macros like \cyrA for le(ers of the Cyrillic alphabet.

4.2. Requirements for alternative ICRs

— Internal  cannot completely replace named symbols and other
complex objects. In particular, the set of possible ‘‘embellished’’ le(ers
and symbols used in math, while not infinite, is mu� too large to want
to address even using the  private area.

— 3e �aracter representation is not unique. For example, ‘‘d’’ can
be coded as <A>+<COMBINING UMLAUT> or <A-UMLAUT>. SoOware should
behave exactly the same when encountering these two. For proper hy-
phenation (and possibly other reasons), the �aracter stream has to be
normalized as documented in the  specs [6].

— An isolated element of the internal representation must have a unique,
semantically well-defined meaning at any time.

— 3e requirements for amath ICR are different, as the input typicallymaps
directly into glyphs (‘‘anything that looks different is different’’). In this

26 Marcel Oliver

sense math is easier, as we do not have to deal with context dependent
shape variants, and it seems a  ICR would not gain mu�.

— While the idea that OTPs select between variant glyphs in a font seems
sound, this must not interfere with the ICR. In other words, the rendering
of glyphs goes beyond the ICR, andwill always involve contextual analy-
sis (e.g., traditional ideograms in Japanese vs. simplified ones in Chinese).
For some interesting baQground, see [5].

4.3. Javier Bezos’ lambda pa<age

Javier Bezos has wri(en a paQage to exploit the additional features of Ω

when runningLATEXonΩ [2].3enameof thepaQage is (maybeunfortunately)
lambda, not to be confused with lambda the executable, whi� is the name
for calling the standard LATEX format on Ω (and referred to as Λ in the Ω

documentation).

lambda the paQage is to provide support for multilingual and multi-
encoded documents in a clean way, and to supply the necessary interfaces for
class and paQage writers. Javier has released the code as a working proposal,
and has stated that he is pausing development pending important design de-
cisions for both LATEX3 and Ω. Meanwhile he is looking for comments on his
code. 3e following description of lambda draws heavily on Javier’s original
posts:

Let us recall how TEX handles non- �aracters. While TEX can read
 files, as xmltex [3] demonstrates, non-�aracters cannot be rep-
resented internally by TEX as su�. Instead, TEX uses macros generated by in-
putenc, and whi� are finally expanded into a true �aracter (or a TEX macro)
by fontenc:

é --- inputenc --> \’e --- fontenc --> ^^e9

Even Cyrillic, Arabic, etc., �aracters are processed this way!

Ω can represent non- �ars internally. Hence, actual �ars are used
instead ofmacros (with a few exceptions—OTPs can output control sequences.
Note, however, that the �aracters that are output by an OTP obtain their
catcode at the time the replacement is done. 3is means that ‘‘private’’ names
containing @ cannot be used.). Trivial as it seems, this actually makes a huge
difference. For example, the path followed by é will be:

é--an encoding OTP-| |-- T1 font OTP--> ^^e9

+-> U+00E9 -+

\’e --‘‘fontenc’’---| |- OT1 font OTP -> \OT1\’{e}

Multilingual Support in LATEX3 27

3ename ‘‘fontenc’’ for the input translation is usedbecause of the te�nical
similarity of the code.3is reflects that conversion to happens a9er full
expansion of the input stream. In other words, things like \’e are preserved
whenwri(en to an .auxfile ormoved around, as the following table illustrates:

==

A B C D E

--

LaTeX a) "82 \’e * - - - - - > "E9

b) \’e \’e * - - - - - > "E9

==

Lambda a) "82 "82 "82 "00E9 "E9

b) \’e \’e "82 "00E9 "E9

Now \’e \’e e"0301 "00E9 "E9

A: 3e source file.

B: ICR, as created by \protected@edef or \protected@write. We see that
LATEX has a unique 7-bit  ICR, while lambda operates mostly on the
encoding of the input file.

C: Evaluation, with fully expanded tokens. In TEX this is is the final step (\
step E inΩ) with the font codes. Note that in the current implementation
(row ‘‘Now’’), lambdadoesnot convert\’e to ‘‘é’’, but toe U+0301 (i.e., the
corresponding combining�ar).Normalization takes place in the internal
 step D. In fact, the definition of \’ in la.sd is:

\DeclareScriptCommand\’[1]{#1\unichar{"0301}}

D: AOer input encoding translation. (Note that this is already ‘‘output’’ as
far as the high level format LATEX/lambda is concerned! It is still possible
that OTPs for case �ange, contextual shaping, etc., act at this level.)

E: AOer font encoding translation and the final step in Ω.

OTPs can be divided into two groups: those generating  from ar-
bitrary input, and those rendering the resulting  using suitable (or
maybe just available) fonts. 3e  text may also be analyzed and trans-
formed by external OTPs at the right place. lambda further divides these two
groups into four:

— Encoding: convert the source text to .

— Input: set input conventions. Keyboards have a limited number of keys,
and hands a limited number of fingers.Wewant to provide an easyway to
enter �aracters using the most basic keys of keyboards (whi�
means �aracters for Latin keyboards). Examples could be:

28 Marcel Oliver

– ---→ em-dash (a well known TEX input convention)

– ij → U+0133 (in Dut�)

– no → U+306E (the corresponding Hiragana �aracter)

Now we have the  (with TEX tags) memory representation whi� has
to be rendered:

— Writing: contextual analysis, ligatures, spaced punctuation marks, and so
on.

— Font: conversion from  to the local font encoding or the appro-
priate TEX macros (if the �aracter is not available in the font).

3is s�eme fitswell in the design principles. ( is designed
to deal with memory representation, while text rendering or fonts are leO to
‘‘appropriate standards’’.Hence,most of so-called fonts cannot render
properly text in many scripts because they laQ the required glyphs.)

4.4. Critique of ‘‘late’’ conversion to 

3e strategy of ‘‘late’’ conversion to  as employed by lambda (step
D in the table of the previous section) has been criticized for a number of
reasons.

— Using OTPs in this way means that they must act on arbitrary byte se-
quences rather than a well defined Ω internal �aracter representation
(OICR). 3is however is wrong, at least conceptionally.

— Transformations of�aracter token strings (e.g., reading fromandwriting
to .aux files) can’t be controlled by OTPs unless we (pretend to) typeset
something. A large amount of document processing (building a table of
contents or arranging data for page representation) is concerned with
�aracter string manipulation not related to typese(ing at all. 3us is
seems interesting to think about whether or not a similar concept (not
necessarily the same!) should be made available for this part of the pro-
cess. 3is could be an OTP aware version of \edef.

— Normalization takes place too late. For example, LATEX code that needs to
determine if two pieces of text are equal will break.

4.5. Critique of current Ω’s input translations

3efirst problem is that swit�ing the \InputTranslationaffects code and
data alike, and does not apply to the results of macro expansion:

Multilingual Support in LATEX3 29

\def\myE{E}

\InputTranslation <an encoding>

E\myE % only explicit I is transcoded

3e following case is more severe. Changing the translation OTP does not help
when the input is already tokenized:

\ocp\OCPa=inutf8 % OTP for UTF-8 input

\def\foo{abc^^e4d} % default seems to be Latin-1

\show\foo

% the following fails and can’t be corrected later on:

\def\bar{ab\InputTranslation currentfile\OCPa c^^c3^^a4}

\show\bar

(Note that in this example the escaped�aracter codes are assumed to be single
8-bit �aracters in the input file.) 3e macro \barwill now contains the tokens

\bar=macro:

->ab\InputTranslation currentfile\OCPa c^^c3^^a4.

3us if you use \bar later on you will get the wrong �aracters because the
input was umlaut-a in -, but what is stored in \bar are the two�aracters
uppercase-A-with-tilde and currency-sign. Furthermore, if \bar is used any-
where, it will �ange the input translation from the next line on to -. 3is
could be in a completely different file.

Since we have been asked to provide input encoding �anges for LATEX
within paragraphs, e.g., for individual words, something like this would hap-
pen if su� a �ange appears, say, inside the argument of \section.

One possible solution: Not reimplement \InputTranslation to select an
encoding specific OTP, but select a single OTP that does something equivalent
to the current active �aracter me�anism where, as is the case now, the exact
meaning of a�aracter depends on the current definition of amacro. Although
imperfect, this approa� doesn’t introduce any new problems. People who
need something be(er can always abandon the legacy encodings and use
 directly.

30 Marcel Oliver

5. Transition issues

5.1. Compatibility Goals

— Input file compatibility: Reasonable LATEX2ε files should run without
problems in LATEX3. ‘‘On the other hand, independent of any encoding
issues, any successor to LATEX2ε will have to make a cut, in my opinion
or else it will not be mu� be(er. Realistically, compatibility is probably
less than we tried for swit�ing from 209 to 2ε. In particular, there will
need to be a heavy organized rewrite of external paQages, perhaps even
financially supported.’’ (FM)

— Pixel compatibility of the generated output: Desirable (old documents
should not suddenly get bad line-breaks), but not absolutely crucial. One
could always keep an old teTeX tarball for those special cases where strict
identity is essential.

LATEX is currently being used as an ar�ival format (arXiv, for example), so
there should not be unnecessary breakage.

5.2. Must-haves for a new TEX engine

If TEX is to be retired as the underlying engine for a future LATEX, the
following are essential.

— PDFTEX functionality. Although PDF for printing can easily be produced
via the dvi–ps–pdf route, currently only PDFTEX can break embedded
hyperlinks correctly across lines.3eproblem is that, unlike color support
where the beginning and end of a color region are just marks, a PDF
hyperlink is a rectangular region, so if a link spans more than one line,
multiple links need to be created. 3e geometry of the lines, however, is
hard to determine from the .dvi file.

(3e PDFTEX maintainer most likely faces the same dilemma: To jump or
not to jump. Syn�ronizing any su� decision would be important.)

— Must be available on all major and minor platforms.

Ω is now available on Web2C based installations, whi� includes teTeX
for Unix (Linux), MiKTeX and fpTeX for Windows, as well as a recent
port to MacOS. Commercial TEX systems may not be as far. Textures,
whi� has a respectable user base on MacOS, appears to be based on a
heavily modified version of TEX—it has a flash mode where the output is
computed real-time and shown in a different window.

Multilingual Support in LATEX3 31

— Long-time stability: 3e engine should not �ange substantially under-
neath LATEX. Although Ω has matured for some time now, there are still a
number of fundamental deficiencies (Section 3.2) whose eventual resolu-
tion is tied together with the high level format in nontrivial ways.

— ε-TEX [8] has a few items that would help, but nothing indispensable, and
is not currently considered in a state to build upon.

5.3. Impact of - on LATEX onΩ

Let’s assume we moved to some version of Ω with - as the default
input encoding (whi� appears to be a reasonable long-term solution to shoot
for). What issues are likely to arise in the transition?

— Any existing otherwise LATEX3 compliant .tex would work. If it’s plain
, it would work anyway, if it’s neither  nor -, it could, as is
the case now, load a suitably adopted inputenc.

— Upgrading to a new LATEX would need to be accompanied by the in-
stallation of new executables in addition to the class and style files of
core LATEX3. 3is may be less of an issue as conveniently paQaged TEX
distributions are increasingly used.

— Significant, although not dramatic, performance hit. Λ takes about 1.9 to
2.7 times as long as LATEX (the largest slowdown is seen in files with heavy
use of \boldsymbol, whi� is a big performance hog in any case). 3is
is negligible considering the growth in average ma�ine performance of
the time scale that LATEX has been in existence. . .

— Most English language documents contain accented le(ers in names or
other foreign words. Default LATEX will not hyphenate su�words, so the
�ange will relieve authors from taking explicit action in su� cases (i.e.,
learning about font encodings or specifying break points).

— Ex�ange of multilingual documents will drastically improve, as there
will be one standard way of doing things. Mainstream users will be able
to easily process .tex files containing non-Latin �aracters (e.g., Chinese
authors’ names, even when the main text is English).

— 3e current Λ (\LATEX on Ω) has a high degree of compatibility with
standard LATEX (usually, but not always, generating bit-identical output).
However, it is clear that the high level format must �ange in some way
to take advantage of the features that Ω offers, whi� is likely to break
lots of third-party paQages. It is not yet clear how mu� compatibility
must be sacrificed.

32 Marcel Oliver

5.4. Arguments in favor of jumping now

— If LATEX does not get state-of-the-art multilingual support with version 3,
it may be a long time before another su� major �ange.

— Basing LATEX on Ω poses a hen-and-egg problem that will not go away
automatically. Ω will only become completely stable if there is unequiv-
ocal support from the user interface community (i.e., the LATEX people),
and LATEX needs some of the features Ω provides to become a serious
multilingual typese(ing system.

—  is currently receiving a lot of a(ention and publicity. So it may
be advantageous to ride that wave, in particular as it seems te�nically
sound (within the constraints of providing upward compatibility from
various legacy standards—for comments on some of the limitations of
 see [16]).

5.5. SoA transition

We could advance LATEX and Λ in parallel, i.e., have a version of LATEX
for TEX and one for Ω, until the development of both Ω and LATEX-on-Ω has
sufficiently stabilized to allowa complete swit�.3e core LATEX teamconsiders
this strategy the most realistic.

— LATEX3 for Latin alphabet languages could probably be completed sooner,
and does not depend on the s�edule of a LATEX external development
effort.

— So one should try for finding an LICR that can be incorporated in an Ω

LICR in a way that it would be transparent for those parts of LATEX whi�
do not deal with featuresΩ provides alone.

— Adiversion of paths between the two systemsmust be avoided. ‘‘It would
bring Ω into a corner not ge(ing enough users and wouldn’t be good for
LATEX on TEX either. It should be possible to build on identical principles
even if some of the kernel is te�nically differently solved. As long as the
outer and inner (i.e. the slightly higher) interfaces are identical, one can
keep both user groups together until it is possible to swit�.’’ (FM)

— A soO transition has the potential danger that a suboptimal design gets
frozen, as some aspectsmust remain untested until the engine is replaced.

Multilingual Support in LATEX3 33

6. Parsing  in TEX

Some details (taken more or less literally from contributions by RP and
DC) about the mess when trying to parse - correctly using the current TEX
engine.

3e main problem are combining �aracters. In principle, every �aracter
could bemade active to look forward to find the combining�aracter sequence
aOer it, and ‘‘put it over its ownhead’’.Oneneeds to loopuntil a non-combining
�ar is found.

3e hard bit is that having made every �aracter active, \begin no longer
parses as the begin token but as \ b e g i n. 3erefore one has to make the
active definition of \ look ahead to grab all the ‘‘le(ers’’ where ‘‘le(er’’ means
those �aracters that were catcode 11 until you made them 13, so you have
to maintain a list of all those, and �eQ one by one with what’s in the token
stream. Similarly, mat�ing { } no longer works (unless you �eat and leave
those catcode 1 and 2), and in the end you have to write TEX’s tokeniser in
TEX. Whi� is possible but not especially fast and hard to do without breaking
some add-on LATEX paQage, somewhere.

Incidentally, one reason why xmltex [3] can not support - is that TEX
buffers to the end-of-line marker (^J or ^M) and throws away any bytes with
value 32 that occur at the end of this buffer, whi�might just be half of a 16-bit
quantity that you’d rather keep. 3ere’s no way to control this behavior from
within TEX.

7. Internal  in TEX

A�imBlumensath: ‘‘Some rough ideashow to implement support
in TEX.’’

— Internally �aracters can be encoded as command sequences of
the form \HEX_CODE, i.e., ‘A’ would become \0041.

— Ea� font would define these sequences appropriately, i.e, \def\0041{A}.
Characters not included in the font would raise an error message.

— To convert the input file to the internal representation one could
write a preprocessor in TEX whi� is invoked by the \documentclass
command. 3at’s IMHO the easiest way and I don’t think the run-
time penalty would be that great. 3e preprocessor should leave com-
mand sequences and braces alone, i.e. \begin{bar} would become
\begin{\0062\0061\0072}.

34 Marcel Oliver

3e only problem I see with this approa� are \catcode-�anges.

8. 3e virtual font me�anism

Lars Hellström, maintainer of the of the fontinst paQage [20] writes:

3is is certainly a design flaw in TEXwhi� should be fixed in its successor,
but it is nothing you cannot live with as a user. Evenwhen you have to use one
\language code for ea� language–encoding pair you have you don’t rea�
TEX’s limit for the number of different languages, because there are never
more than a handfull of font encodings that are useful for any given language
(possibly with the exception of the a–z only languages, but then you can reuse
the same hyphenation pa(erns anyway). 3e problems that exist are more at
an administative level, whi� means things get more complicated for those
that implement language support in LATEX, but those are manageable.

It’s not hard to make a virtual font, provided you use some tool like fontinst
to do all the file format conversions and shuffling numbers around (without
su� a tool I can agree it is a nightmare). I certainly found it mu� easier to
use fontinst ‘‘out of the box’’ than I found babel (although I may be a bad
example as I have now ended up being the maintainer of fontinst). What has
been missing though is the basic support for non-latin scripts, but there the
situation has improved lately with Vladimir Volovi�’s T2 paQage [21] whi�
covers the cyrillic script.

Support for other scripts (even if it is no more than the basic descriptions of
some encoding as an .etxfile) is welcome andwill be added to the distribution
if only someone contributes it. I suspect a partial reason noone seems to have
done so for the other scripts is that you need to understand a lot of esoterical
ma(ers (manyofwhi�are poorly documented, or at least veryhard to find the
documentation for, if documented at all) to develop support for new encodings
(whether for LATEX or for fontinst) and thus the set of people who are qualified
to do it may in many cases be almost empty. But in any case it is a onetime
effort; if you do it for one font for a script, there’s very li(le work involved in
later doing it for any other font for that script (unless you’re a font freak who
absolutely has to produce the very best results with the glyphs available in the
base fonts).

My experience is that the drivermapfiles are troublesomemu�more oOen
than the VF files are, but that problem should also become less important, as
fontinst v1.9 can now write the necessary map files for e.g. dvips as well.

Multilingual Support in LATEX3 35

9. Platform support for -

‘‘How many of the people on this list can easily (in their favorite editing
system) edit or generate a - encoded file? Hands up?’’

— 3e standard encoding of BeOS is -.

— Xterms in XFree 4.0 are - ready, so they can be expected to soon
become default in all major Linux distributions.

— Emacs [7] has had the basic capabilities in place for some time. However,
an add-on (Mule-UCS [17]) is necessary to read and write -. Surpris-
ingly, the current Emacs 21 beta does come with -, either, although
future support seems to be planned, see [4].

— TeTeXdit Plus (there are other editors on the Mac whi� allow to save in
- encoding).

— 3e AlphaTk text editor [1], available on any platform that has Tcl/Tk.

Comment (JB): ‘‘I think the question is wrong. 3e right one is, how many of
the people on this list will use an editor whi� can generate a - encoded
file within 4 or 5 years?’’

10. Ligatures vs. Kerning

Ω is moving towards usingOTPs for selecting glyph variants and ligatures.
In TEX, however, both ligature andkerning information is contained in the .tfm
files (TEX fontmetrics).Mi�aelDownes gives a historic perspective of why this
is so:

3epa(ern-mat�ing required to identify ligature points is almost identical
(in the standard English cases) to the pa(ern-mat�ing required for kerning.

For kerns between pairs of �aracters, it is natural to store the information
in the .tfm file because it is highly dependent on the glyph shapes. 3en one
needs to run some sort of pa(ern-mat�ing process to cat� pairs of �aracters
in the typese(ing sequence in order to insert kerns where applicable. For
ligatures a very similar pa(ern-mat�ing process is needed, only somewhat
more generalized. (For more complicated requirements one needs something
even more general, like the Ω OTPs.)

3e idea of repeating the similar processing in two separate steps instead of
combining them as mu� as possible into a single subroutine would doubtless
have seemed horrifyingly wasteful to Knuth. 3is would fall within the fabled
‘‘inner loop’’ that hementions so oOen in tex.webas an area of special concern.

36 Marcel Oliver

And then it is natural to store the ligature pa(ern data in the same place
(the .tfm file) to make using it as simple as possible.

But consequently if one wants to typeset some material with ligatures
turned off, the need to call a different ‘‘no-ligatures’’ font tends to be a real
hindrance in practice.

Contributors

Hans Aberg, Donald Arseneau, Barbara Beeton, Javier Bezos, A�im Blu-
mensath,3ierryBou�e,DavidCarlisle,AlexanderCherepanov,Mi�ael John
Downes,WilliamF.Hammond, LarsHellstrfm,Werner Lemberg, FrankMi(el-
ba�, Marcel Oliver, Roozbeh Pournader, Bernd Rai�le, Chris Rowley, Apos-
tolos Syropoulos, Karsten Tinnefeld.

Bibliography

[1] Alphatk text editor home page.
http://www.santafe.edu/~vince/alphatk/about.html

[2] J. Bezos-López, lambda: Language selection system forΩ.
http://perso.wanadoo.es/jbezos/archive/lambda.zip

[3] D. Carlisle, xmltex: A system for typese(ing XML files with TEX.
http://www.ctan.org/tex-archive/macros/xmltex/

[4] O. Cheung, Unicode encoding for GNU Emacs.
http://www.cs.uu.nl/~otfried/Mule/

[5] D. Connolly, ‘‘Character Set’’ Considered Harmful, expired HTML working
group draO, Internet Engineering Task Force, 1995.
http://www.w3.org/MarkUp/html-spec/charset-harmful

[6] M. Davis and M. Dürst, Unicode Normalization Forms, Unicode Standard
Annex #15.
http://www.unicode.org/unicode/reports/tr15

[7] Free SoOware Foundation, GNU Emacs page.
http://www.gnu.org/software/emacs/

[8] varepsilon-TEX Project Team,4e varepsilon-TEX reference site.
http://www.brics.dk/~engberg/home_export_share_TeXdoc/doc/

html/e-tex/etex.html

[9] FarsiTeX Project Team, FarsiTEX: A Persian/English bidirectional typeset-
ting system based on TEX.
http://farsitex.sourceforge.net/

[10] Y.Haralambous, Simplification of the Arabic Script: 4ree Different Approa=es
and their Implementations.
http://genepi.louis-jean.com/omega/arabic-simpli98.pdf

[11] Y. Haralambous and J. Plaice,4e Ω Project Home Page.
http://omega-system.sourceforge.net/

[12] Y. Haralambous and J. Plaice,Dra9 documentation for the Ω system, Version
1.8, Mar� 1999.
http://na.uni-tuebingen.de/~oliver/latex/doc-1.8.dvi

[13] Y. Haralambous, J. Plaice, and J. Braams, Never again active =aracters! Ω-
Babel, TUGboat 16 (1995), No. 4, 418–427.
http://genepi.louis-jean.com/omega/never-again.pdf

[14] M. Kuhn, UTF-8 and Unicode FAQ for Unix/Linux.
http://www.cl.cam.ac.uk/~mgk25/unicode.html

[15] W. Lemberg, CJK: East Asian fonts.
http://www.ctan.org/tex-archive/fonts/CJK/

[16] F. Mi(elba� and C. Rowley, Application-independent representation of
multi-lingual text, 10th International Unicode Conference, Mainz, 1997.
http://na.uni-tuebingen.de/~oliver/latex/rowley-mittelbach.

dvi

[17] Mule-UCS FTP site.
ftp://ftp.m17n.org/pub/mule/Mule-UCS/

[18] S. Toledo, Exploiting ri= fonts, TUGboat 21 (2000), No. 2, 121–128.

[19] D. Unruh, ucs: Support for using UTF-8 as input encoding in LATEX docu-
ments.
http://www.unruh.de/DniQ/latex/unicoden/

[20] A. Jeffrey, S. Rah`, and U. Vieth, fontinst: Simplify the installation of
PostScript or TrueType text fonts.
http://www.ctan.org/tex-archive/fonts/utilities/fontinst/

[21] V. Volovi�, T2: Standard Cyrillic font encodings.
http://www.ctan.org/tex-archive/macros/latex/contrib/

supported/t2/

